Multi-Swarm Particle Swarm Optimization with an Adaptive Type Selection for Restarting Particles
نویسندگان
چکیده
منابع مشابه
Autonomous Particles Groups for Particle Swarm Optimization
In this paper a modified Particle Swarm Optimization (PSO) algorithm called Autonomous Groups Particles Swarm Optimization (AGPSO) is proposed to further alleviate the two problems of trapping in local minima and slow convergence rate in solving high dimensional problems. The main idea of AGPSO algorithm is inspired by individuals’ diversity in bird flocking or insect swarming. In natural colon...
متن کاملAn Adaptive Tribe-Particle Swarm Optimization
This paper talks about the problems in particle swarm optimization (PSO), including local optimum and difficulty in improving solution accuracy by fine tuning. We presents a new variation of Adaptive Tribe-PSO model where nonlinear updating of inertia weight and a particle’s fitness with TribePSO model are combined to improve the speed of convergence as well as fine tune the search in the multi...
متن کاملAn Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants
Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...
متن کاملAdaptive range particle swarm optimization
This paper proposes a new technique for particle swarm optimization called adaptive range particle swarm optimization (ARPSO). In this technique an active search domain range is determined by utilizing the mean and standard deviation of each design variable. In the initial search stage, the search domain is explored widely. Then the search domain is shrunk so that it is restricted to a small do...
متن کاملMulti swarm bare bones particle swarm optimization with distribution adaption
Bare bones PSO is a simple swarm optimization approach that uses a probability distribution like Gaussian distribution in the position update rules. However, due to its nature, Bare bones PSO is highly prone to premature convergence and stagnation. The characteristics of the probability distribution functions used in the update rule have a tense impact on the performance of the bare bones PSO. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers
سال: 2012
ISSN: 1342-5668,2185-811X
DOI: 10.5687/iscie.25.105